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We describe a numerical algorithm based on Godunov methods for integrating the equations of com-
pressible magnetohydrodynamics (MHD) in multidimensions. It combines a simple, dimensionally-
unsplit integration method with the constrained transport (CT) discretization of the induction equation
to enforce the divergence-free constraint. We present the results of a series of fully three-dimensional
tests which indicate the method is second-order accurate for smooth solutions in all MHD wave families,
and captures shocks, contact and rotational discontinuities well. However, it is also more diffusive than
other more complex unsplit integrators combined with CT. Thus, the primary advantage of the method is
its simplicity. It does not require a characteristic tracing step to construct interface values for the Rie-
mann solver, it is straightforward to extend with additional physics, and it is suitable for use with nested
and adaptive meshes. The method is implemented as one of two dimensionally unsplit MHD integrators
in the Athena code, which is freely available for download from the web.

� 2008 Elsevier B.V. All rights reserved.
1. Introduction method of Evans and Hawley (1988) to enforce the divergence-free
Numerical methods for compressible magnetohydrodynamics
(MHD) have become indispensable for the study of a wide variety
of problems in astrophysics, such as turbulence and angular
momentum transport in accretion disks (Balbus, 2003), the pro-
duction and collimation of jets and winds (de Gouveia Dal Pino,
2005), and the properties of supersonic turbulence in the ISM
(McKee and Ostriker, 2007). Although a wide variety of numerical
algorithms for integrating the equations of MHD are possible, there
has been a substantial amount of effort in recent years to extend
Godunov methods to MHD (Dai and Woodward, 1998; Ryu et al.,
1998; Falle et al., 1998; Powell et al., 1999; Balsara and Spicer,
1999; Tóth, 2000,; Dedner et al., 2002; Pen et al., 2003; Londrillo
and Del Zanna, 2004; Ziegler, 2004; Crockett et al., 2005; Fromang
et al., 2006; Mignone et al., 2007; Cunningham et al., 2007), pri-
marily because such methods are very good for shock capturing,
and flows involving contact and/or rotational discontinuities. In
addition, single-step Eulerian methods that solve the equations
of motion in the conservative form are better suited for use with
static or adaptive mesh refinement (SMR or AMR, respectively).

In a recent series of papers (Gardiner and Stone, 2005, 2008, here-
after GS05 and GS08, respectively), we have described the extension
of the directionally unsplit corner transport upwind (CTU) integra-
tor of Colella (1990) to MHD using the constrained transport (CT)
ll rights reserved.

e).
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constraint on the magnetic field. We refer to this combination as the
CTU + CT algorithm. Several novel ingredients of the MHD CTU + CT
algorithm were shown to be important. In particular, spatial recon-
struction schemes that contain a directionally-split time advance
(such as the piecewise parabolic method, PPM, of Colella and Wood-
ward, 1984, hereafter CW), must include additional source terms in
multidimensional MHD compared to the one-dimensional (1D)
case. Moreover, the transverse flux gradients used in CTU to correct
the interface states in multidimensions also require similar terms.
The nature and form of these terms is documented in detail in Sec-
tions 3.1 and 4.1.2 of GS05 for two dimensions (2D), and Sections
3.1 and 4.2 in GS08 for three dimensions (3D). In addition, it was
shown that simple arithmetic averaging is not sufficient to compute
the edge-centered electric fields required by CT from the face-cen-
tered fluxes returned by the Riemann solver. Instead, simple recon-
struction algorithms were developed and tested (GS05).

More recently, we have presented a detailed description of the
implementation of the CTU + CT algorithm in Athena, a new code for
astrophysical MHD (Stone et al., in press, hereafter S08). The results
of a comprehensive hydrodynamic and MHD test suite were used to
demonstrate the fidelity of the CTU + CT method in 1D, 2D, and 3D.

During the course of developing the CTU + CT algorithm in Athe-
na, we have experimented with other dimensionally unsplit integra-
tors for MHD. We have found that a simple predictor–corrector
scheme (see the appendix in Falle, 1991) similar to the MUSCL–Han-
cock scheme described by van Leer (2006; see also Toro 1999) can
form the basis of a robust Godunov method for MHD when com-
bined with CT. We refer to this combination as the VL + CT algorithm.

mailto:jmstone@princeton.edu
http://www.sciencedirect.com/science/journal/13841076
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The purpose of this paper is to provide a comprehensive description
of the VL + CT algorithm as implemented in Athena.

The VL + CT method has several advantages over the CTU + CT
integrator, including (1) it does not require a time-advance using
characteristic tracing in the reconstruction step, thus eliminating
the need for a characteristic decomposition of the equations of mo-
tion in the primitive variables, (2) for the same reason, it does not
require the source terms in the spatial reconstruction step for mul-
tidimensional MHD that are needed in the CTU + CT integrator, (3)
it does not require the MHD source terms associated with the
transverse flux gradients that are needed in the CTU + CT integrator
(4) physical source terms are easy to add at second order, and (5) it
seems to be more robust than the CTU + CT integrator in extreme
parameter regimes. The first three of these advantages make
VL + CT integrator particularly attractive for more complex physics
than ideal MHD. On the other hand, the tests presented in this pa-
per show that the VL + CT integrator is more diffusive and less
accurate than CTU + CT. Nonetheless, we anticipate that VL + CT
may be of interest to others developing or testing their own meth-
ods, or those who are interested in using Athena.

The outline of this paper is as follows. In the following two sec-
tions, we write down the equations of ideal MHD solved by the
method, and discuss their finite-volume and finite-area discretiza-
tion. Although these sections repeat the description in S08 to some
extent, we include them here to make this paper self-contained. In
Section 4 we describe the second-order spatial reconstruction algo-
rithm needed to compute the interface states used by the Riemann
solver to compute upwind fluxes, and how the area-averaged face-
centered electric fields returned by the Riemann solver are con-
verted into line-averages at cell-corners as needed by CT to evolve
the field. The various Riemann solvers used with the method are
also briefly cataloged. In Section 5 a step-by-step description of
the algorithm is given, while in Section 6 the results of 3D tests
are shown, with the results of the VL + CT method described in this
paper compared directly to the results of the CTU + CT integrator
described in S08. Finally, in Section 7 we conclude.

2. Equations

The VL + CT algorithm solves the equations of ideal MHD, which
when written in conservative form are
oq
ot
þr � ðqvÞ ¼ 0; ð1Þ

oqv
ot
þr � ðqvv� BBþ P�Þ ¼ 0; ð2Þ

oE
ot
þr � ððEþ P�Þv� BðB � vÞÞ ¼ 0; ð3Þ

oB
ot
�r� ðv� BÞ ¼ 0; ð4Þ

where P� ¼ P þ ðB � BÞ=2 is the total pressure (gas plus magnetic), E
is the total energy density, and we have chosen a system of units in
which the magnetic permeability l ¼ 1. We use an ideal gas equa-
tion of state for which the gas pressure can be written as
P ¼ ðc� 1Þ�, where c is the ratio of specific heats. The internal en-
ergy density � is related to the total energy E via
E � �þ qðv � vÞ=2þ ðB � BÞ=2: ð5Þ
The method described can be used for any value of c. For a barotropic
equation of state, P ¼ PðqÞ, Eqs. (3) and (5) are dropped from the
system.

3. Discretization

To develop the discrete form of the MHD equations, we adopt a
uniform Cartesian grid. The computational domain is divided into
cells of size dx ¼ Lx=Nx; dy ¼ Ly=Ny; dz ¼ Lz=Nz, where for example
Lx and Nx are the size of the domain and number of cells in the
x-direction respectively. We use the standard notation that the cell
denoted by indices ði; j; kÞ is located at cell-center position
ðxi; yj; zkÞ. Time in the interval t 2 ðt0; tf Þ over which the integration
is carried out is discretized into N non-uniform steps. A superscript
is used to denote time levels, so tnþ1 � tn ¼ dtn; hereafter we drop
the superscript on dt.

We use the finite-volume discretization of Eqs. (1) through (3),
and a finite-area discretization of Eq. (4). Integrating over the vol-
ume of the cell ði; j; kÞ, and over a time step dt, after application of
the divergence theorem, gives

Unþ1
i;j;k ¼ Un

i;j;k �
dt
dx

Fnþ1=2
iþ1=2;j;k � Fnþ1=2

i�1=2;j;k

� �
� dt

dy
Gnþ1=2

i;jþ1=2;k � Gnþ1=2
i;j�1=2;k

� �
� dt

dz
Hnþ1=2

i;j;kþ1=2 �Hnþ1=2
i;j;k�1=2

� �
; ð6Þ

where Un
i;j;k denotes the volume-average at time level n

Un
i;j;k ¼

1
dxdydz

Z zkþ1=2

zk�1=2

Z yjþ1=2

yj�1=2

Z xiþ1=2

xi�1=2

Uðx; y; z; tnÞdxdydz; ð7Þ

while the vector Fnþ1=2
i�1=2;j;k is the time- and area-averaged flux through

the ‘‘x-faces” of the cell (surfaces of the cell with unit normal in the
x-direction) at the location xi�1=2

Fnþ1=2
i�1=2;j;k ¼

1
dydzdt

Z tnþ1

tn

Z zkþ1=2

zk�1=2

Z yjþ1=2

yj�1=2

Fðxi�1=2; y; z; tÞdydzdt: ð8Þ

Similar expressions can be written for Gnþ1=2
i;j�1=2;k and Hnþ1=2

i;j;k�1=2, the
time- and area-averaged fluxes through the y- and z-faces of the cell
located at yj�1=2 and zk�1=2. For adiabatic MHD the vectors U and F
have components

U ¼

q
qvx

qvy

qvz

E

Bx

By

Bz

2
66666666666664

3
77777777777775
; F ¼

qvx

qv2
x þ P þ B2=2� B2

x

qvxvy � BxBy

qvxvz � BxBz

ðEþ P�Þvx � ðB � vÞBx

0
Byvx � Bxvy

Bzvx � Bxvz

2
66666666666664

3
77777777777775
: ð9Þ

The components of G and H are given in S08.
Although the last three components of Eqs. (6) through (9) rep-

resent the finite-volume discretization of the induction equation
based on the volume-averaged components of the magnetic field,
we do not use this form to integrate the magnetic field. Instead,
the appropriate integral form of the induction Eq. (4) is given by
integration over the surfaces rather than the volume of the cell.
For example, integrating Eq. (4) over the ðx; y; zÞ-faces of the cell lo-
cated at ði� 1=2; j; kÞ; ði; j� 1=2; kÞ, and ði; j; k� 1=2Þ respectively
gives, after use of Stoke’s Law

Bnþ1
x;i�1=2;j;k ¼ Bn

x;i�1=2;j;k �
dt
dy

E
nþ1=2
z;i�1=2;jþ1=2;k � E

nþ1=2
z;i�1=2;j�1=2;k

� �

þ dt
dz

E
nþ1=2
y;i�1=2;j;kþ1=2 � E

nþ1=2
y;i�1=2;j;k�1=2

� �
; ð10Þ

Bnþ1
y;i;j�1=2;k ¼ Bn

y;i;j�1=2;k þ
dt
dx

E
nþ1=2
z;iþ1=2;j�1=2;k � E

nþ1=2
z;i�1=2;j�1=2;k

� �
� dt

dz
E

nþ1=2
x;i;j�1=2;kþ1=2 � E

nþ1=2
x;i;j�1=2;k�1=2

� �
; ð11Þ

Bnþ1
z;i;j;k�1=2 ¼ Bn

z;i;j;k�1=2 �
dt
dx

E
nþ1=2
y;iþ1=2;j;k�1=2 � E

nþ1=2
y;i�1=2;j;k�1=2

� �
þ dt

dy
E

nþ1=2
x;i;jþ1=2;k�1=2 � E

nþ1=2
x;i;j�1=2;k�1=2

� �
; ð12Þ
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Fig. 1. Centering of the volume-averaged hydrodynamic variables U, are-averaged
components of the magnetic field B, and line-averaged emfs used to evolve the field
E on the computational grid. The area-averaged fluxes of U returned by the
Riemann solver are co-located with the field B.
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where, for example,

Bn
x;i�1=2;j;k ¼

1
dydz

Z zkþ1=2

zk�1=2

Z yjþ1=2

yj�1=2

Bxðxi�1=2; y; z; tnÞdydz ð13Þ

is the area-averaged x-component of the magnetic field, and

E
nþ1=2
x;i;j�1=2;k�1=2 ¼

1
dxdt

Z tnþ1

tn

Z xiþ1=2

xi�1=2

Exðx; yj�1=2; zk�1=2; tÞdxdt ð14Þ

is the x-component of the electric field E ¼ �v� B (or emf) aver-
aged along the appropriate line element.

Fig. 1 summarizes the centering of the volume-averaged com-
ponents of Un

i;j;k, the area-averaged components of the magnetic
field at cell faces, and the line-averaged components of the emfs
E

nþ1=2
x;i;j�1=2;k�1=2, etc., located at cell edges. The time- and area-aver-

aged fluxes Fnþ1=2
i�1=2;j;k;G

nþ1=2
i;j�1=2;k, and Hnþ1=2

i;j;k�1=2 are co-located with the
components of the magnetic field.

As discussed in S08, in Athena the face-centered fields are
evolved with CT, and the volume averaged fields are then com-
puted from the second-order accurate averages

Bx;i;j;k ¼
1
2
ðBx;iþ1=2;j;k þ Bx;i�1=2;j;kÞ; ð15Þ

By;i;j;k ¼
1
2
ðBy;i;jþ1=2;k þ By;i;j�1=2;kÞ; ð16Þ

Bz;i;j;k ¼
1
2
ðBz;i;j;kþ1=2 þ Bz;i;j;k�1=2Þ: ð17Þ

The face-centered values are always considered the primary repre-
sentation of the magnetic field.
4. Calculating the fluxes

To compute estimates of the fluxes of the volume-averaged
variables, for example Fnþ1=2

i�1=2;j;k at an x-interface, a variety of 1D Rie-
mann solvers can be used. These require values for each variable at
the left- and right-side of each cell interface, some of which must
be reconstructed from the neighboring cell-centered values. Final-
ly, the area-averaged electric field returned by the Riemann solver
must be reconstructed to the edges of the cell to update the mag-
netic field using CT (see Fig. 1). Each of these ingredients of the
algorithm is described in the sections below.

4.1. Riemann solvers

An excellent introduction to the use of a Riemann solver to com-
pute the time-averaged flux through each interface in Godunov
methods is given in Toro (1999). Complex and expensive Riemann
solvers are not necessary to compute upwind fluxes, inexpensive
and approximate solvers that do not require a characteristic decom-
position can be used. More complex solvers are preferred because
they are much more accurate, but they are not required.

In Athena, the same set of Riemann solvers that are used with
the CTU + CT algorithm (described in Section 4.3 of S08) can be
used with the VL + CT method described here. These include non-
linear solvers such as HLLE (Harten et al., 1983; Einfeldt et al.,
1991), HLLC for hydrodynamics (Batten et al., 1997; Toro, 1999),
and HLLD for MHD (Miyoshi and Kusano, 2005), or linear solvers
such as Roe’s method (Roe, 1981) extended to MHD (Cargo and
Gallice, 1997). Other solvers include Toro’s FORCE flux (Toro,
1999), and exact solvers in simple cases (isothermal hydrodynam-
ics). The primary criteria for choosing a solver are speed and accu-
racy. We have found the HLLC solver for hydrodynamics, the HLLD
solver for MHD, or Roe’s solver in either case to be the most useful
for applications. Implementation of these solvers is discussed in
more detail in S08.

4.2. Computing the interface states

The Riemann solvers discussed above require values for the
conserved variables to the left (denoted by UL;i�1=2) and to the right
(denoted by UR;i�1=2) of the cell interface located at xi�1=2. These
must be reconstructed from cell centered values. With CT, only
the components of the magnetic field transverse to the interface
need be reconstructed; the longitudinal component is given by
the appropriate face-centered value (for example, Bx;i�1=2;j;k in the
case of reconstruction in the x-direction to the interface located
at ði� 1=2; j; kÞ). For the transverse fields, the cell-centered aver-
ages of the face-centered fields (Eqs. (16) and (17)) are used.

For second-order spatial accuracy, piecewise linear interpola-
tion is used. This interpolation is carried out in the primitive vari-
ables, W ¼ ðq; v; P;BÞ as tests show this makes the reconstruction
less oscillatory. For the same reason, slope limiters are required
in the reconstruction. The reconstruction can be summarized using
the following steps:

Step 1. Convert from conserved to primitive variables at cell
centers.

Step 2. Compute the left-, right-, and centered-differences of
each of the primitive variables wi except the longitudinal
component of the magnetic field (e.g. Bx for reconstruc-
tion in the x-direction). These differences are defined as
dwL;i ¼ wi �wi�1;

dwR;i ¼ wiþ1 �wi; ð18Þ
dwC;i ¼ ðwiþ1 �wi�1Þ=2;

where the subscripts L;R, and C refer to locations relative
to the cell-center at xi.
Step 3. Apply monotonicity constraints to the differences in the
characteristic variables, so that the characteristic recon-
struction is total variation diminishing (TVD), e.g. see
LeVeque (2002), for example
dwm
i ¼ SIGNðdwC;iÞminð2 j dwL;i j;2 j dwR;i j; j dwC;i jÞ:

ð19Þ

Note that the minmod limiter used in this step is only one
of a wide variety that can be adopted (LeVeque, 2002).
Step 4. Compute the left- and right-interface values using the
monotonized difference in the primitive variables
ŵL;iþ1=2 ¼ wi þ dwm
i =2; ð20Þ

ŵR;i�1=2 ¼ wi � dwm
i =2: ð21Þ
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It is instructive to compare these steps to those required for the sec-
ond-order (PLM) reconstruction used with the CTU + CT algorithm
described in Section 4.2.2 of S08. Note that the slope limiting in step
3 above is performed in the primitive variables. In fact, limiting in the
characteristic variables can improve the method, although it is not
essential. If characteristic limiting is used, step 3 above is replaced
with steps 3 through 5 in Section 4.2.2 of S08, but using dt ¼ 0 (no
time advance of the interface states is needed). The tests reported
in this paper all use slope limiting in the characteristic variables.

We emphasize that the characteristic tracing step required to
time-advance the interface states with CTU + CT (step 7 in Section
4.2.2 of S08) is not required here. This greatly simplifies the recon-
struction. Moreover, it eliminates the need for additional terms for
multidimensional MHD that arise due to the use of a directionally-
split update in the characteristic tracing step, that is the source
terms discussed in Section 5.2 in S08 are also not needed.

Finally, it is also possible to combine higher than second-order
spatial reconstruction with the VL + CT algorithm described here.
For example, the PPM of CW could be used (again, without the
characteristic tracing step). Although this does not increase the for-
mal order of accuracy of the method, we have found it can increase
the overall accuracy of the solution for smooth flow in some
circumstances.

4.3. Calculating the emfs

In GS05, it was shown that a simple arithmetic average of the
face-centered fluxes of the magnetic field returned by the Riemann
solver (called the ‘‘flux-CT” method in T2000) to construct the line-
averaged emfs at cell corners used by CT leads to too little dissipa-
tion, and results in an unstable algorithm on some tests when com-
bined with certain unsplit integrators (such as CTU). Moreover,
arithmetic averaging destroys the upwinded character of the fluxes
in the sense that it does not reduce to the appropriate 1D upwind
fluxes for plane-parallel grid-aligned flows. Instead, the relation
between the face- and cell-centered magnetic fields implies a rela-
tion between the CT and Godunov electric fields. This in turn al-
lows one to show that the method of constructing the CT electric
fields has implications for the dissipation and stability of the
numerical algorithm. In most circumstances, the best method for
constructing the CT electric fields was found to be

Ez;i�1=2;j�1=2 ¼
1
4
ðEz;i�1=2;j þ Ez;i�1=2;j�1 þ Ez;i;j�1=2 þ Ez;i�1;j�1=2Þ

þ dy
8

oEz

oy

� �
i�1=2;j�1=4

� oEz

oy

� �
i�1=2;j�3=4

 !

þ dx
8

oEz

ox

� �
i�1=4;j�1=2

� oEz

ox

� �
i�3=4;j�1=2

 !
; ð22Þ

where the derivative of Ez on each grid cell face is computed by
selecting the ‘‘upwind” direction according to the contact mode, e.g.

oEz

oy

� �
i�1=2

¼

ðoEz=oyÞi�1 for vx;i�1=2 > 0;
ðoEz=oyÞi for vx;i�1=2 < 0;
1
2

oEz
oy

� �
i�1
þ oEz

oy

� �
i

� �
otherwise

8>><
>>: ð23Þ

(where the subscript j has been suppressed) with an analogous
expression for the ðoEz=oxÞ, where

oEz

oy

� �
i;j�1=4

¼ 2
Er

z;i;j � Ez;i;j�1=2

dy

� �
: ð24Þ

The cell center reference electric field Er
z;i;j appearing in the above

expression is computed at the same time level as the face-centered
electric field (Godunov fluxes). Fig. 5 in S08 clarifies the relative
location between the Godunov fluxes, corner-centered emf, cell-
centered reference states, and the derivatives of the electric field.
In 3D analogous expressions to the above are required to relate
the x- and y-components of the electric field to the appropriate cell
corners (see Fig. 1). These expressions follow directly from Eqs. (23)
and (24) using a cyclic permutation of the ðx; y; zÞ and ði; j; kÞ.
5. Three-dimensional integration algorithm

The VL + CT algorithm can now be summarized by the following
sequence of steps.

Step 1. Using a Riemann solver, construct first-order upwind
fluxes
F�i�1=2;j;k ¼FðUi�1;j;k;Ui;j;kÞ; ð25Þ
G�i;j�1=2;k ¼FðUi;j�1;k;Ui;j;kÞ; ð26Þ
H�i;j;k�1=2 ¼FðUi;j;k�1;Ui;j;kÞ; ð27Þ

where the longitudinal component of the magnetic field
in each vector, Ui;j;k etc., is set equal to the face-centered
value at each interface.
Step 2. Apply the algorithm of Section 4.3 to calculate the CT
electric fields at cell-corners, E�x;i;j�1=2;k�1=2;E

�
y;i�1=2;j;k�1=2

and E�z;i�1=2;j�1=2;k, from the appropriate components of
the face-centered fluxes returned by the Riemann solver
in step 1, and a cell center reference electric field calcu-
lated using the initial data at time level n, i.e. Er;n

i;j;k ¼
�ðvn

i;j;k � Bn
i;j;kÞ.

Step 3. Update the cell-centered hydrodynamical variables for
one-half time step ðdt=2Þ using flux differences in all
three-dimensions, Eq. (6). Update the face-centered com-
ponents of the magnetic field for one-half time step using
CT (Eqs. (10) through (12)).

Step 4. Compute the cell-centered magnetic field at the half-time
step from the average of the face centered field computed
in Step 4, using Eqs. (15) through (17).

Step 5. Using the second-order (piecewise linear) reconstruction
algorithm described in Section 4.2, compute the left- and
right-state quantities at the half time step at cell inter-
faces in the x-direction ðUnþ1=2

L;i�1=2;j;k;U
nþ1=2
R;i�1=2;j;kÞ, the y-direc-

tion ðUnþ1=2
L;i;j�1=2;k;U

nþ1=2
R;i;j�1=2;kÞ, and the z-direction ðUnþ1=2

L;i;j;k�1=2;

Unþ1=2
R;i;j;k�1=2Þ simultaneously.

Step 6. Using a Riemann solver, construct 1D fluxes at interfaces
in all three dimensions
Fnþ1=2
i�1=2;j;k ¼FðUnþ1=2

L;i�1=2;j;k;U
nþ1=2
R;i�1=2;j;kÞ; ð28Þ

Gnþ1=2
i;j�1=2;k ¼FðUnþ1=2

L;i;j�1=2;k;U
nþ1=2
R;i;j�1=2;kÞ; ð29Þ

Hnþ1=2
i;j;k�1=2 ¼FðUnþ1=2

L;i;j;k�1=2;U
nþ1=2
R;i;j;k�1=2Þ; ð30Þ

where the longitudinal component of the magnetic field
in the vector of left and right states is set equal to the
face-centered value at each interface.
Step 7. Compute a cell-centered reference electric field at tnþ1=2

using the cell-centered velocities and magnetic field at
the half timestep computed in steps 3 and 4. Then, apply
the algorithm of Section 4.3 to calculate the CT electric
fields at cell-corners, E

nþ1=2
x;i;j�1=2;k�1=2;E

nþ1=2
y;i�1=2;j;k�1=2 and

E
nþ1=2
z;i�1=2;j�1=2;k, from the appropriate components of the

face-centered fluxes returned by the Riemann solver in
step 6 and this reference field.

Step 8. Update the cell-centered hydrodynamical variables for a
full timestep, using Eq. (6) and the fluxes from step 6.
Update the face-centered components of the magnetic
field for full time step using CT (Eqs. (10) through (12))
and the emfs from step 7.
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Step 9. Compute the cell-centered components of the magnetic
field from the updated face-centered values using Eqs.
(15) through (17).

Step 10. Increment the time: tnþ1 ¼ tn þ dt. Compute a new time-
step that satisfies an estimate of the CFL stability condi-
tion based on wavespeeds at cell centers
dt¼C�min
dx

j vnþ1
x;i;j;k j þCnþ1

f ;i;j;k

;
dy

j vnþ1
y;i;j;k j þCnþ1

f ;i;j;k

;
dz

j vnþ1
z;i;j;k j þCnþ1

f ;i;j;k

 !
;

ð31Þ

where C� 6 1=2 is the CFL number, and the denominator
of each quantity in the minima is the maximum wave-
speed normal to the interface in each dimension (Cnþ1

f de-
notes the fast magnetosonic speed evaluated using the
updated cell-centered quantities). The minimum is taken
over all grid cells. Note this is only an estimate of the
CFL stability condition, since the wavespeeds used in the
Riemann solver can be different from those computed
from the cell-centered values.
Step 11. Repeat steps 1–10 until the stopping criterion is reached,
i.e., tnþ1 P tf .

The algorithm can be summarized by the flow chart shown in
Fig. 2. It is instructive to compare these steps to those in the 3D
CTU + CT algorithm described in Section 6.1 in S08. It is also
instructive to compare these steps to those of the original MUS-
CL–Hancock method (van Albada et al., 1982; van Leer, 2006).
The primary difference is in the predict step. In the MUSCL–Han-
cock method, the predict step consists of first updating the cell
centered primitive variables by a half time step using a character-
istic time advance, and then using linear slopes computed using
the old values to reconstruct the variables to the left and right
edges of each cell. These left- and right-states are the time aver-
aged values needed by the Riemann solver to compute second-or-
der fluxes needed for the correct step. In the VL + CT scheme
described here, the predict step consists of updating the conserved
Fig. 2. Schematic flow chart for
variables using first-order fluxes, and then second-order interface
states are computed by spatial reconstruction of these values.
6. Tests

In this section, we show the results from a series of 3D MHD
tests of the VL + CT algorithm, using the problems described in
S08. The results can be compared directly to those for the CTU + CT
integrator shown in S08. In every case the solution has been com-
puted using the HLLD Riemann solver.
6.1. Linear waves

The propagation of linear amplitude, planar waves in a direction
which is oblique to the grid provides a quantitative measure of the
diffusion and dispersion error for each MHD wave mode. The test
uses a computational domain of size 2L� L� L, with L ¼ 1:5, and
periodic boundary conditions in each direction. Solutions are com-
puted using a grid with 2N � N � N cells, with N varying from 8 to
128. The background medium is uniform with density q0 ¼ 1, pres-
sure P0 ¼ 3=5, and c ¼ 5=3. It is easiest to define the magnetic field
in a coordinate system in which the 1-direction is aligned with the
wavevector, in these coordinates ðB1;B2;B3Þ ¼ ð1;

ffiffiffi
2
p

;1=2Þ. For the
entropy mode the longitudinal component of the velocity is v1 ¼ 1,
for the other three modes the background medium is at rest. These
choices give Cf ¼ 2; CA;x ¼ 1, and Cs ¼ 1=2 for the fast, Alfvén, and
slow magnetosonic speeds, respectively. Exact eigenfunctions for
fast and slow magnetosonic, Alfvén, and contact waves are initial-
ized; the eigenvectors for each mode are cataloged in GS08. The
coordinate rotations required to initialize the wave defined in the
ðx1; x2; x3Þ coordinate system at an oblique angle to the computa-
tional grid are given in GS08. By inclining the wavevector to the
grid, we ensure this test is inherently multidimensional, with no
symmetries in any direction. For each mode, the wave is allowed
to propagate one wavelength, and then the L1 error with respect
to the initial conditions is computed from
the 3D VL + CT integrator.
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dUn ¼ 1
N3

X
i;j;k

j Un
i;j;k � U0

i;j;k j; ð32Þ

where U0
i;j;k is the initial solution on the grid. The norm of the L1 er-

ror vector is a useful quantitative measure of the global error in the
solution. Results for this identical test computed with the CTU + CT
algorithm are given in GS05 in 2D, GS08 in 3D, and S08.

Fig. 3 plots the norm of the L1 error vector for each of the four
MHD wave modes as a function of the numerical resolution N com-
puted using the VL + CT algorithm as a solid line. For direct com-
parison, the error in the solution computed with the CTU + CT
algorithm computed with second-order reconstruction is shown
as a dashed line. The errors in both methods are very close, with
the largest discrepancy in the Alfvén mode. The error converges
at second-order for all modes. Note that lower errors are possible
using the CTU + CT method and third-order reconstruction (see
S08 Fig. 32). For example, at n ¼ 128 the L1 error using the third-
order CTU + CT method is a factor of 1.4 lower for the fast wave,
3 lower for the Alfvén wave, 1.4 lower for the slow wave, and 1.5
lower for the entropy wave.
6.2. Circularly polarized alfven wave

Circularly polarized Alfven waves are an exact solution to the
ideal MHD equations, even if they have nonlinear amplitude. Fol-
lowing T2000, we initialize the wave in a uniform medium at rest
with q0 ¼ 1; P0 ¼ 0:1; c ¼ 5=3. The longitudinal component of the
velocity and magnetic field are v1 ¼ 0 and B1 ¼ 1, respectively.
The transverse components of the velocity and magnetic field in
this coordinate system are then ðv2; v3Þ ¼ ðB2;B3Þ ¼ ðA sinð2px1=

kÞ;A cosð2px1=kÞÞ, with A ¼ 0:1. As in the linear wave convergence
test, the computational domain is of size 2L� L� L, with L ¼ 1:5,
and periodic boundary conditions in each direction. Solutions are
Fig. 3. Convergence of the norm of the L1 error vector with numerical resolution N fo
wavelength, computed on a 3D grid with resolution 2N � N � N. The solid line shows t
integrator with second-order reconstruction. Both converge at second-order.
computed using a grid with 2N � N � N cells, with N varying from
8 to 128. The coordinate rotations used to incline the planar wave
solution at an oblique angle to the computational grid are the same
as those used for the linear wave convergence test described above
(see GS08 for details).

Fig. 4 plots the profile of the transverse component of the mag-
netic field which, for the particular coordinate rotations adopted
for this test, is given by

B2 ¼ ðBy � 2BxÞ=
ffiffiffi
5
p

ð33Þ

for resolutions with N from 8 to 64 for traveling waves after prop-
agating five wavelengths. The profiles are dominated by diffusion
rather than dispersion error. For N P 32, the wave amplitude is at
least 0.9 of the original. Also plotted in Fig. 4 is the norm of the L1

error vector as a function of resolution after the wave has propa-
gated one wavelength. For comparison, the error in the CTU + CT
algorithm, computed using second-order reconstruction, is shown
as a dotted line. Fig. 33 of S08 plots the error in the CTU + CT algo-
rithm computed using third-order reconstruction. Comparison of
these two figures shows that the third-order CTU + CT algorithm
has significantly less diffusion than either the second-order VL + CT
or CTU + CT methods; at N ¼ 8 the L1 error is more than a factor of
two smaller using the third-order CTU + CT method. This result,
when combined with the results from the previous test, indicates
the third-order CTU + CT integrator is less diffusive than the VL + CT
method described here. It is also instructive to investigate how the
numerical damping of Alfvén waves depends on the wave ampli-
tude. Comparison of the second panel in Figs. 3 and 4 demonstrates
that when normalized by the initial amplitude, the errors are nearly
identical for both linear and nonlinear waves, and that the error
converges at second order in both cases. Thus, for smooth solutions,
the rate of damping is independent of the initial amplitude, and de-
pends only on resolution.
r propagation of linear modes of each MHD wave family a distance equal to one
he errors for the VL + CT integrator, the dashed line shows errors for the CTU + CT



Fig. 4. (Top) Profile of the transverse component of the magnetic field in a
nonlinear circularly polarized Alfvén wave after propagating a distance of five
wavelengths in a 3D grid with resolution 2N � N � N. The solid line shows N ¼ 64,
the dotted N ¼ 32, the dashed N ¼ 16, and the dot-dash N ¼ 8. (Bottom) Conver-
gence of the norm of the L1 error vector after propagating one wavelength. The solid
line is for the VL + CT integrator. and the dashed for the CTU + CT integrator with
second-order reconstruction. Both converge at second-order.

Fig. 5. Contours of the z-component of the current density in the initial conditions
(top), and after advection twice around the grid (bottom) for a weak field loop. The
contours are plotted for an arbitrary slice in the x� y plane, on a grid with
resolution of 256� 128� 128.
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6.3. Field loop test

The advection of a loop of weak magnetic field has proved to be
a sensitive test of the multidimensional integration algorithm for
the induction equation. In particular, we have used this test in both
GS05 and GS08 to explore methods for constructing the corner-
centered emfs from the face-centered fluxes returned by the Rie-
mann solver. In GS08, we also described how this test could be
used to investigate whether the numerical algorithm preserves
the appropriate discrete representation of r � B ¼ 0. If a field loop
in the x� y plane (so that Bz ¼ 0) is advected with a uniform 3D
velocity field (in particular, with vz–0), then the induction equa-
tion for the z-component of the magnetic field reduces to
oBz=ot ¼ vzðoBx=oxþ oBy=oyÞ ¼ 0. Thus, Bz will remain exactly zero
only if the divergence-free constraint is maintained exactly by
the method.

We have performed two versions of this test for the VL + CT
method. In the first, the computational domain is of size 2L� L�
L, with L ¼ 1 and periodic boundary conditions everywhere. The
density and pressure are uniform with value unity, and c ¼ 5=3.
The velocity is uniform with ðvx; vy; vzÞ ¼ ð2;1;1Þ=
ffiffiffi
6
p

. A field loop
in the x� y plane is initialized using the vector potential given in
GS05; this is a 3D version of the 2D test described there. Fig. 5 plots
contours of the out-of-plane component of the current density
J ¼ r� B after advection of the loop twice around the domain.
The current density is extremely sensitive to oscillations in the
field. The loop contains a current sheet at the surface, and a singular
current spike at the center. Note the VL + CT method keeps the con-
tours of both of these features smooth and nearly symmetric, de-
spite the lack of any symmetries in the problem. In fact, since the
loop has a small but finite magnetic pressure, we expect some evo-
lution in MHD. The contours can be compared to those shown in Fig.
21 in S08 for the CTU + CT method. There is excellent agreement.
We have confirmed that the VL + CT preserves Bz ¼ 0 to machine
round-off error in this test. Thus, although there are many stencils
on which the divergence-free constraint can be maintained, this
test demonstrates the VL + CT algorithm preserves the constraint
on the appropriate stencil to prevent anomalous growth of the field.

In the second test, the computational domain has size L� L� L,
with L ¼ 1, and the grid has a resolution of 1283. Periodic boundary
conditions are used in all dimensions. The density and pressure are
one, c ¼ 5=3, and three components of the velocity are equal to
1=

ffiffiffi
3
p

. The magnetic field is initialized using the vector potential gi-
ven in SG08, it corresponds to a cylindrical column of field loops
inclined at an oblique angle to the mesh. Fig. 6 shows the magnetic
energy at t ¼ 1, after the column has been advected around the
grid once. The figure shows the column maintains its structure,
and there is no evidence for oscillation or dispersion. In this test
the component of the field along the axis of the cylinder should re-
main zero. We have confirmed the VL + CT method keeps this com-
ponent zero to within truncation error.

6.4. Three-dimensional shocktube

One-dimensional Riemann problems are a popular test of the
ability of a scheme to capture shocks, rarefactions, and contact



Fig. 6. Image of the magnetic energy density B2 for the advection of a cylinder of
weak magnetic field loops inclined to the grid, after advection once around the grid,
computed on a 1283 mesh.

Fig. 7. One dimensional slice of selected variables at t ¼ 0:2 from the Riemann problem l
an oblique angle to the mesh.
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and rotational discontinuities. For MHD, 1D tests are too restric-
tive; they cannot reveal errors associated with the development
of a non-solenoidal magnetic field. To extend shocktube problems
to multidimensions, the 1D problem can simply be rotated at an
arbitrary angle to the mesh. Incorrect jump conditions can result,
or the longitudinal component of the magnetic field may not be
kept constant, if the method does not enforce the divergence-free
constraint (Falle et al., 1998, T2000).

While a wide variety of Riemann problems are suitable as a test,
we present the results for the problem shown in Fig. 2a in Ryu and
Jones (1995, hereafter RJ). The left- and right-states that define this
problem are given in RJ, and in Table 2 in S08. Initializing these
states separated by a discontinuity inclined to the grid in a way
which minimizes the generation of noise is not trivial; the method
we use is described in detail in GS08. The calculation is performed
on a grid of size ðLx; Ly; LzÞ ¼ ð3=2;1=64;1=64Þ, with a resolution of
768� 8� 8 cells.

Fig. 7 plots the solution at t ¼ 0:2. Direct comparison can be
made to Fig. 35 in S08 (computed using second-order reconstruc-
tion in the CTU + CT algorithm). The solution computed in 1D is
also shown in Fig. 14 of S08. The test is of interest because it devel-
ops discontinuities in each MHD wave mode, that is fast and slow
magnetosonic shocks, rotational discontinuities, and a contact
discontinuity. Each of these is captured well in the solution, indeed
the profiles are nearly indistinguishable from the purely 1D
solution.
abeled as 2a from RJ. The calculation is fully 3D with the initial interface inclined at



Fig. 8. Contours of the density and magnetic pressure at t ¼ 0:2 for the evolution of
a spherical blast wave in a strongly magnetized medium in 3D. The contours are
shown on an x� y slice taken through the center of the mesh. Thirty equally spaced
contours are used between the minimum and maximum of each.
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6.5. Blast wave

As a final test of the method, to demonstrate it can handle
strong shocks and rarefactions in 3D, we present the evolution of
a strong blast wave in a uniform, magnetized medium (this test
is also presented in GS08 and S08). The computational domain
has size L� 1:5L� L with L ¼ 1, and a resolution of 200� 300�
200. The initial density q0 ¼ 1, pressure P0 ¼ 0:1, magnetic field
B0 ¼ ð1=

ffiffiffi
2
p

;1=
ffiffiffi
2
p

;0Þ, and velocity v0 ¼ 0. These values give
b ¼ 2P0=B2

0 ¼ 0:2 in the background medium. In a region of radius
R ¼ 0:1, the initial pressure is set to 100. This generates a strong
circular blast wave which propagates outward, and a rarefaction
which propagates inward, evacuating the overpressurized region.
The Mach number of the outward moving shock is about 5. Fig. 8
shows contours of the density and magnetic pressure at t ¼ 0:2
(just before the blast wave leaves the domain) on a slice in the
x� y plane taken through the center of the grid. The contours are
smooth and symmetric. The inner low density bubble is clearly col-
limated by the strong field into an elliptical region with long axis
parallel to the background field. Perpendicular to the field lines,
the blast wave propagates rapidly, and there is a large separation
between it and the contact discontinuity that bound the inner
elliptical bubble. Parallel to the field the blast wave and contact
are spaced much more closely. The solution computed with the
VL + CT integrator is nearly identical to that shown in Fig. 36 in
S08 computed using the CTU + CT method. We have found that
increasing the strength of the shock (by increasing the initial pres-
sure in r < R) makes little difference to the solution. Moreover, the
stability of the VL + CT integrator is independent of the strength of
the blast wave. However, we find increasing the magnetic field
strength in the ambient gas by a factor of ten (to b ¼ 0:002) causes
the integrator to crash at late times ðt > 0:05Þ if an adiabatic equa-
tion of state is used. The algorithm runs stably even for such low b
with an isothermal equation of state. This behavior is consistent
with the well known difficulties associated with integration of
the total (rather then internal) energy equation at very low b.

7. Conclusion

We have described a dimensionally unsplit integrator for MHD
which is based on: (1) a predictor–corrector algorithm (Falle, 1991)
similar to the MUSL–Hancock scheme described by van Leer
(2006); Toro, 1999; see also the discussion at the end of Section
5, and (2) the CT algorithm of Evans and Hawley (1988) to preserve
the divergence-free constraint. The algorithm is simple. It does not
require a characteristic evolution in the reconstruction step, nor
does it require the addition of source terms in multidimensional
MHD that arise from using directionally-split updates to compute
quantities at fractional time steps. Such terms were shown to be
necessary for the CTU integrator for MHD in SG05 and SG08. Since
the method is so simple, it is easy to extend with additional phys-
ics, as pointed out by Falle (1991). For example, source terms can
be added at second-order by applying them at the half time-step
in the predictor (directly after step 4 described in Section 5). Sim-
ilarly, since a characteristic decomposition is not required in the
reconstruction step, it is easy to extend the method to systems in
which the eigenvectors are complex, for example special relativis-
tic MHD.

An important feature of the method is the use of CT to evolve
the magnetic field. One disadvantage of the version of CT used here
is that it requires a staggered grid for the magnetic field, which
complicates the implementation and the interface to AMR drivers.
On the other hand, since elliptic solvers are not required for diver-
gence-cleaning, the method is computationally efficient, and scales
extremely well on parallel processors. Moreover, we have shown
through 3D tests of the advection of weak field loops that the stag-
gered grid formulation of CT prevents spurious growth of magnetic
field, and presumably anomalous forces associated with magnetic
monopoles, which arise if the constraint is not maintained on the
same stencil as is used to compute fluxes. Often it is not clear what
is the appropriate discrete representation of the constraint that
must be preserved. Our tests demonstrate that the VL + CT integra-
tor maintains the constraint on the appropriate stencil. This test
may be useful for other methods.

The VL + CT integrator is implemented as one of two distinct
multidimensional unsplit integrators in the C version of the Athena
code, which is described in more detail in S08. A simple command
line flag to the configure script is used to choose between the
VL + CT method, or the more complex CTU + CT method described
in S08. In this paper, we have presented a series of 3D tests of
the VL + CT method, and made direct comparison to the results
computed with CTU + CT. Since the identical code is used for the
tests (using, for example, the identical Riemann solver), differences
in the solutions can only be related to the integrators themselves.
We find the VL + CT method converges on smooth solutions of each
MHD wave family at second order, and it captures shocks, contact
and rotational discontinuities accurately. However, the method is
also measurably more diffusive than the CTU + CT method, by
about a factor of 1.5–2 for most tests of smooth flow. The VL + CT
integrator is not substantially faster than CTU + CT in terms of
cpu time (about 20% faster for adiabatic MHD), since it requires
the same number of Riemann solves and spatial reconstruction
steps per cell as CTU + CT. Since the latter is more accurate, we con-
sider the CTU + CT algorithm the preferred method for most MHD
calculations with Athena. On the other hand, we have found the
VL + CT method to be more robust in extreme parameter regimes,
for example in strongly supersonic MHD turbulence (Lemaster
and Stone, in press). In particular, for a CFL number C� 6 1=3 and
first-order fluxes, it can be shown that the VL + CT method is
positive definite. This property can be exploited to build a robust
integration step for cells where more accurate, higher-order
integration fails. Thus, we have used the VL + CT integrator for re-
cent studies of supersonic MHD turbulence that strain the stability
of the methods (Lemaster and Stone, in press). Probably the biggest
advantage of the VL + CT integrator is its simplicity. As imple-
mented in Athena, it requires only about one half the number of
lines of code as CTU + CT. Thus, it is often our integrator of choice
when extending Athena with more complex physics.
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The VL + CT integrator can easily be combined with AMR, and
therefore we expect it may be useful for many existing code frame-
works. It is hoped that the description and tests of the algorithm
given in this paper will be useful to others wishing to implement
a simple and robust Godunov method for MHD, and that the meth-
od will prove useful for the study of a wide variety of problems in
astrophysical fluid dynamics.
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